linear constant造句
例句與造句
- The determination of trellis complexity of linear constant weight codes
線性等重碼格子復雜度的確定 - In this paper , we will more deeply research on the base of the works , the first part , we give the summarize for the condition and the significance . the second part , we give the preparation knowledge to the whole paper ; the third part , we research the lower and upper bound of the generalized hamming weights for the linear codes ; include d ( r , n , k ) bound , the finite sum representation of the lower and upper bound function of generalized hamming weights for linear codes , generalized griesmer bounds ; the 4 - th part , research the definition , the property of the r - th generalized weights for the non - linear codes and non - linear constant codes , and give the expression of the generalized weight of binary ( n , m , d ) non - linear codes ; the 5 - th part , research the weight hierarchy of linear codes and non - linear codes , for example , necessary condition and sufficient condition , the 6 - th part , we research the expression of the r - th generalized hamming weights of reseaval classes codes
本文在已有的基礎之上作了進一步的探討,第一章綜述了廣義hamming重量的現(xiàn)狀和意義;第二章給出了全文的預備知識;第三章研究了線性碼的廣義hamming重量的一些上下界;包括d ( r , n , k )界,上下限函數(shù)有限和表達式,廣義griesmer界;第四章討論了非線性碼及非線性等重碼的廣義hamming重量的定義、性質,給出了2元( n , m , d )非線性碼的第r廣義hamming重量的表達式;第五章研究了線性碼、非線性碼的重量譜系;第六章給出了幾類碼的廣義hamming重量的表達式,這些碼包括直和碼( directsumcodes ) 、笛卡爾積碼( cartesianproductcodes ) 、張量積碼( tensorproductcodes ) 、延長hamming碼。 - In chapter 2 , the ii ordering is presented and the arbitrary functions and the arbitrary constants are least in the solution of formal series under the ii ordering by illustration ; furthermore , the author introduces the application of the standard form of reid to ascertain the target equation of linear constant partial equations
在第二章中,作者給出了reid標準型算法中的型序關系,通過舉例說明在型序下,得到的形式冪級數(shù)解中任意函數(shù)和任意常數(shù)的個數(shù)最少;并提出了reid標準型的一個重要應用:確定線性常系數(shù)偏微分方程組的目標方程。 - It's difficult to find linear constant in a sentence. 用linear constant造句挺難的